Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(7): 3420-3435, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36864742

RESUMEN

Obg is a widely conserved and essential GTPase in bacteria, which plays a central role in a large range of important cellular processes, such as ribosome biogenesis, DNA replication, cell division and bacterial persistence. Nevertheless, the exact function of Obg in these processes and the interactions it makes within the associated pathways remain largely unknown. Here, we identify the DNA-binding TrpD2 protein YbiB as an interactor of the Escherichia coli Obg (ObgE). We show that both proteins interact with high affinity in a peculiar biphasic fashion, and pinpoint the intrinsically disordered and highly negatively charged C-terminal domain of ObgE as a main driver for this interaction. Molecular docking and X-ray crystallography, together with site-directed mutagenesis, are used to map the binding site of this ObgE C-terminal domain within a highly positively charged groove on the surface of the YbiB homodimer. Correspondingly, ObgE efficiently inhibits the binding of DNA to YbiB, indicating that ObgE competes with DNA for binding in the positive clefts of YbiB. This study thus forms an important step for the further elucidation of the interactome and cellular role of the essential bacterial protein Obg.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Unión al GTP Monoméricas , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Simulación del Acoplamiento Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo
2.
mBio ; 12(4): e0070321, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34340538

RESUMEN

Decades of research into bacterial persistence has been unable to fully characterize this antibiotic-tolerant phenotype, thereby hampering the development of therapies effective against chronic infections. Although some active persister mechanisms have been identified, the prevailing view is that cells become persistent because they enter a dormant state. We therefore characterized starvation-induced dormancy in Escherichia coli. Our findings indicate that dormancy develops gradually; persistence strongly increases during stationary phase and decreases again as persisters enter the viable but nonculturable (VBNC) state. Importantly, we show that dormancy development is tightly associated with progressive protein aggregation, which occurs concomitantly with ATP depletion during starvation. Persisters contain protein aggregates in an early developmental stage, while VBNC cells carry more mature aggregates. Finally, we show that at least one persister protein, ObgE, works by triggering aggregation, even at endogenous levels, and thereby changing the dynamics of persistence and dormancy development. These findings provide evidence for a genetically controlled, gradual development of persisters and VBNC cells through protein aggregation. IMPORTANCE While persistence and the viable but nonculturable (VBNC) state are currently investigated in isolation, our results strongly indicate that these phenotypes represent different stages of the same dormancy program and that they should therefore be studied within the same conceptual framework. Moreover, we show here for the first time that the dynamics of protein aggregation perfectly match the onset and further development of bacterial dormancy and that different dormant phenotypes are linked to different stages of protein aggregation. Our results thereby strongly hint at a causal relationship between both. Because many conditions known to trigger persistence are also known to influence aggregation, it is tempting to speculate that a variety of different persister pathways converge at the level of protein aggregation. If so, aggregation could emerge as a general principle that underlies the development of persistence which could be exploited for the design of antipersister therapies.


Asunto(s)
Adenosina Trifosfato/metabolismo , Escherichia coli/fisiología , Viabilidad Microbiana , Infección Persistente/microbiología , Fenotipo , Agregado de Proteínas , Recuento de Colonia Microbiana/estadística & datos numéricos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Infección Persistente/etiología
3.
Int J Mol Sci ; 21(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861427

RESUMEN

Even though the Obg protein is essential for bacterial viability, the cellular functions of this universally conserved GTPase remain enigmatic. Moreover, the influence of GTP and GDP binding on the activity of this protein is largely unknown. Previously, we identified a mutant isoform of ObgE (the Obg protein of Escherichia coli) that triggers cell death. In this research we explore the biochemical requirements for the toxic effect of this mutant ObgE* isoform, using cell death as a readily accessible read-out for protein activity. Both the absence of the N-terminal domain and a decreased GTP binding affinity neutralize ObgE*-mediated toxicity. Moreover, a deletion in the region that connects the N-terminal domain to the G domain likewise abolishes toxicity. Taken together, these data indicate that GTP binding by ObgE* triggers a conformational change that is transmitted to the N-terminal domain to confer toxicity. We therefore conclude that ObgE*-GTP, but not ObgE*-GDP, is the active form of ObgE* that is detrimental to cell viability. Based on these data, we speculate that also for wild-type ObgE, GTP binding triggers conformational changes that affect the N-terminal domain and thereby control ObgE function.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Escherichia coli/química , Guanosina Trifosfato/química , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Proteínas Mutantes , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas , Relación Estructura-Actividad
4.
Mol Microbiol ; 112(5): 1593-1608, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31498933

RESUMEN

Obg is a versatile GTPase that plays a pivotal role in bacterial persistence. We previously showed that the Escherichia coli homolog ObgE exerts this activity through transcriptional activation of a toxin-antitoxin module and subsequent membrane depolarization. Here, we assessed the role of G-domain functionality in ObgE-mediated persistence. Through screening of a mutant library, we identified five obgE alleles (with substitutions G166V, D246G, S270I, N283I and I313N) that have lost their persistence function and no longer activate hokB expression. These alleles support viability of a strain otherwise deprived of ObgE, indicating that ObgE's persistence function can be uncoupled from its essential role. Based on the ObgE crystal structure, we designed two additional mutant proteins (T193A and D286Y), one of which (D286Y) no longer affects persistence. Using isothermal titration calorimetry, stopped-flow experiments and kinetics, we subsequently assessed nucleotide binding and GTPase activity in all mutants. With the exception of the S270I mutant that is possibly affected in protein-protein interactions, all mutants that have lost their persistence function display severely reduced binding to GDP or the alarmone ppGpp. However, we find no clear relation between persistence and GTP or pppGpp binding nor with GTP hydrolysis. Combined, our results signify an important step toward understanding biochemical determinants underlying persistence.


Asunto(s)
Toxinas Bacterianas/biosíntesis , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de Unión al GTP Monoméricas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Relación Estructura-Actividad , Activación Transcripcional/genética
5.
Sci Rep ; 6: 33723, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27641546

RESUMEN

Programmed cell death (PCD) in bacteria is considered an important target for developing novel antimicrobials. Development of PCD-specific therapies requires a deeper understanding of what drives this process. We recently discovered a new mode of PCD in Escherichia coli that is triggered by expression of a mutant isoform of the essential ObgE protein, ObgE*. Our previous findings demonstrate that ObgE*-mediated cell death shares key characteristics with apoptosis in eukaryotic cells. It is well-known that reactive oxygen species (ROS) are formed during PCD in eukaryotes and play a pivotal role as signaling molecules in the progression of apoptosis. Therefore, we explored a possible role for ROS in bacterial killing by ObgE*. Using fluorescent probes and genetic reporters, we found that expression of ObgE* induces formation of ROS. Neutralizing ROS by chemical scavenging or by overproduction of ROS-neutralizing enzymes did not influence toxicity of ObgE*. Moreover, expression of ObgE* under anaerobic conditions proved to be as detrimental to bacterial viability as expression under aerobic conditions. In conclusion, ROS are byproducts of ObgE* expression that do not play a role in the execution or progression of ObgE*-mediated PCD. Targeted therapies should therefore look to exploit other aspects of ObgE*-mediated PCD.


Asunto(s)
Apoptosis , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Muerte Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Espacio Intracelular/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...